

An Evolutionary Approach to the Design of Spiking Neural P Circuits

Alberto Leporati and Lorenzo Rovida

University of Milano-Bicocca Department of Informatics, Systems, and Communication <u>alberto.leporati@unimib.it</u>, <u>lorenzo.rovida@unimib.it</u>

Nice – June 3rd, 2024

Our goals

- Define SN P circuits, for computing Boolean functions
- Investigate how well evolutionary algorithms discover SN P circuits that compute a given (possibly partially defined) Boolean function $f: \{0,1\}^n \to \{0,1\}^m$

Partially defined = defined through some pairs $({\bf x},{\bf y})$, with $\,{\bf x}\in\{0,1\}^n\,$ and $\,{\bf y}\in\{0,1\}^m\,$

• Some classification problems can be seen as partially defined Boolean functions

For simplicity, we start with Genetic Algorithms (GA) and m = 1

SN P gates

• An SN P gate is a spiking neuron containing a subset of the rules

 $a^i \to a \quad \text{for } i \in \{0, 1, \dots, \ell\}$

where $\ell \geq 1$ is the number of input lines

- An SN P gate computes a Boolean function $f: \{0,1\}^\ell \to \{0,1\}$, by encoding 0 as no spike, and 1 as one spike
 - Differences with respect to standard spiking neurons:
 - ✓ No delays
 - \checkmark Regular expressions have the simple form $E=a^i$
 - ✓ No (explicit) forgetting rules
 - ✓ Rule $a^0 \rightarrow a$ (can be avoided, using different encodings)

Symmetric gates

- The output of a symmetric gate only depends upon the number of 1's given as input
- A ℓ -input symmetric gate can thus be represented by a subset $G \subseteq \{0, 1, \dots, \ell\}$
- Examples of symmetric gates:
 - ℓ -input AND gate: AND = $\{\ell\}$
 - ℓ -input OR gate: $OR = \{1, 2, \dots, \ell\}$
 - (1-input) NOT gate: $NOT = \{0\}$
 - (2-input) XOR gate: $XOR = \{1\}$
 - ℓ -input PARITY gate: PARITY = $\{1, 3, 5, \dots, \ell\}$ for ℓ odd

$$PARITY = \{1, 3, 5, \dots, \ell - 1\} \quad \text{for } \ell \text{ even}$$

Symmetric gates

- The output of a symmetric gate only depends upon the number of 1's given as input
- A ℓ -input symmetric gate can thus be represented by a subset $G \subseteq \{0, 1, \dots, \ell\}$
- Examples of symmetric gates:
 - ℓ -input AND gate: AND = $\{\ell\}$
 - ℓ -input OR gate: $OR = \{1, 2, \dots, \ell\}$
 - (1-input) NOT gate: $NOT = \{0\}$
 - (2-input) XOR gate: $XOR = \{1\}$
 - ℓ -input PARITY gate: PARITY = $\{1, 3, 5, \dots, \ell\}$ for ℓ odd

 $PARITY = \{1, 3, 5, \dots, \ell - 1\} \text{ for } \ell \text{ even}$

Also the SN P gates are symmetric !

SN P circuits

- Circuits composed of SN P gates
- Circuits = acyclic graphs (nodes = SN P gates, edges = synapses)
- W.I.o.g., circuits are made of layers of SN P gates
- A *n*-input/*m*-output SN P circuit computes a Boolean function $f: \{0,1\}^n \to \{0,1\}^m$

Evaluation of an SN P circuit:

- Start with a vector $\mathbf{x} \in \{0,1\}^n$ encoding the *n* Boolean input values
- For each layer, compute its output vector by applying the rules in each SN P gate of the layer
- The output vector of the last layer is the output of the SN P circuit

SN P circuits

Observations:

- Each gate takes its input values from the input vector to the layer which is the output vector of the previous layer (the input vector, for the first layer)
- There is no point in considering delays in the rules
- Each SN P gate starts with $0 \ {\rm spikes}$
 - → If we want to reuse the circuit, we must « clean it » before evaluation Otherwise, we assume implicit forgetting rules $a^i \rightarrow \lambda$

Boolean functions

Observations:

- The number of functions $f: \{0,1\}^n \to \{0,1\}^m$ is $(2^m)^{2^n}$
- Even restricting to m = 1, we have 2^{2^n} functions
 - Finding a specific function is like finding a needle in the haystack Unfeasible already for n = 8
- If we are given $2^n k$ input/output pairs that partially define $f: \{0, 1\}^n \to \{0, 1\}$, there are 2^k Boolean functions which are coherent with such a partial specification
 - If we are given $2^n k$ input/output pairs that partially define $f: \{0,1\}^n \to \{0,1\}^m$ there are $(2^m)^k = 2^{k \cdot m}$ Boolean functions which are coherent with such a partial specification

Boolean functions

- Hence, the fewer input/output pairs given, the easier it is to find a Boolean function consistent with them
- Polynomial-size, constant depth circuits made of symmetric gates are more powerful than AND/OR/NOT circuits:

Theorem (Furst, Saxe, Sipser, 1985): No polynomial-size, constant depth AND/OR/NOT circuit can compute the PARITY function.

Research questions

- RQ1: How well (or poorly) do evolutionary algorithms work, in finding the SN P circuits that compute a given Boolean function/solve a given classification task?
- RQ2: How does the quality of the solutions found vary depending on some characteristics of the Boolean function (for example, non-linearity)?

Non-linear Boolean functions are interesting for cryptographic applications

- Genetic Algorithms (GA) are meta-heuristic optimization algorithms
- They solve constrained and unconstrained optimization problems
- A population of candidate solutions (individuals) is evolved through generations, driven by a fitness function
- Operators to be defined:
 - Selection
 - Crossover
 - Mutation

Parameters to be defined:

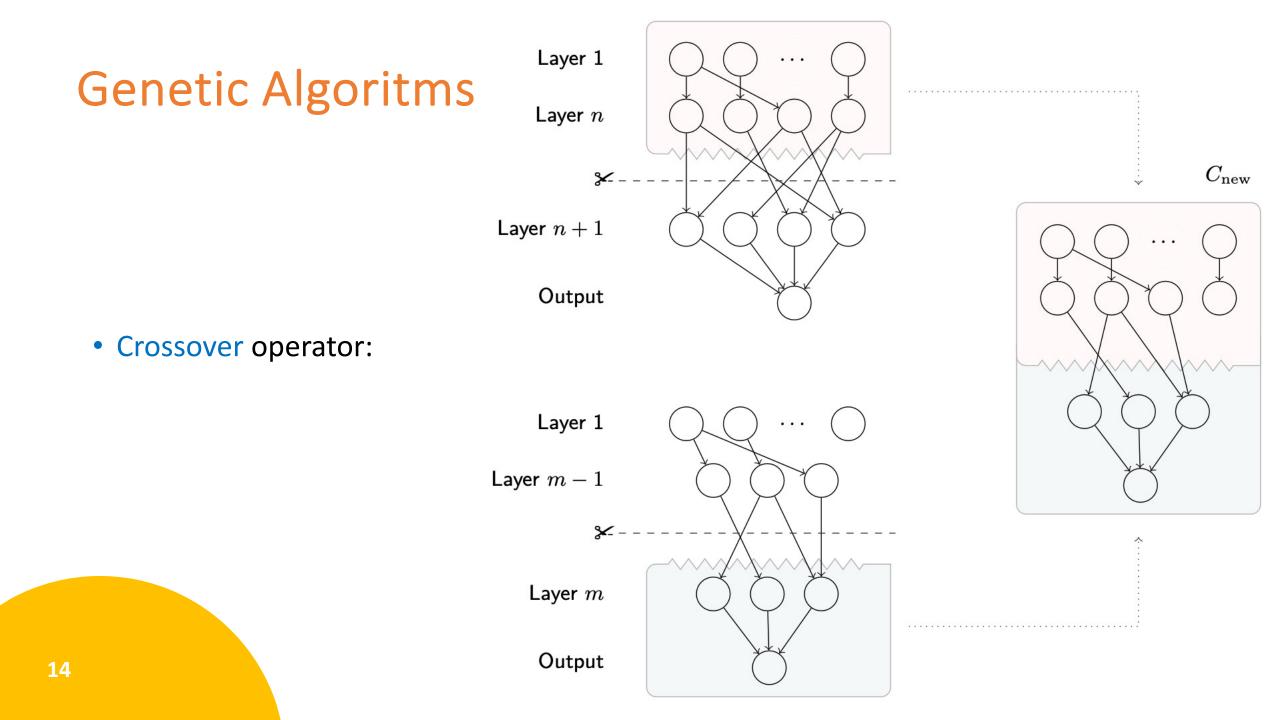
- Population size
- Probability of crossover
- Probability of mutation
- Number of generations / halting condition

• Fitness function: Given a list of pairs $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_k, \mathbf{y}_k)$ that partially define a function $f : \{0, 1\}^n \to \{0, 1\}^m$, the fitness of a circuit c is:

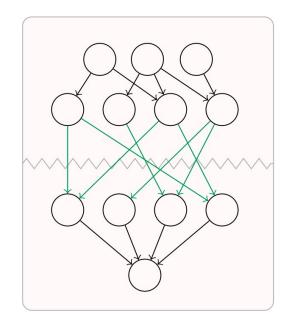
fitness
$$(c, f) = 1 - \frac{1}{k} \left(\sum_{i=1}^{k} c(\mathbf{x}_i) \neq \mathbf{y}_i \right)$$

- Selection operator: fitness proportionate selection
 - → The *fittest* individuals are chosen for breeding
- Elitism: 10% of the best individuals are copied to the next generation
- Halting condition: fixed number of generations

- Crossover: inspired by one-point crossover, in which parent circuits are cut before a (randomly chosen) layer
- Two new individuals are produced by taking the first (resp., second) part of the first circuit, and the second (resp., first) part of the second circuit
- The fitness of the two children is evaluated, and only the best one is kept

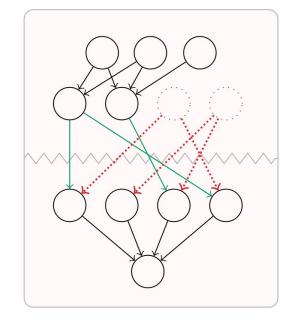


 Crossover: fixing (cleaning) the children circuit, if the two layers before the cut, in the parent circuits, have a different number of neurons



Same number of neurons

= no cleaning

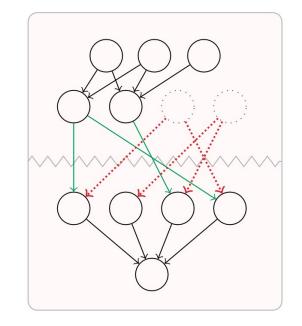


Red edges are invalid = cleaning required

 Crossover: fixing (cleaning) the children circuit, if the two layers before the cut, in the parent circuits, have a different number of neurons

Cleaning means:

- Removing invalid edges
- Removing gates whose output is not used in the next layer
- Removing empty layers

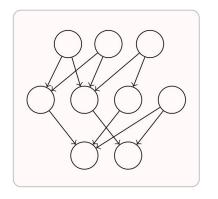


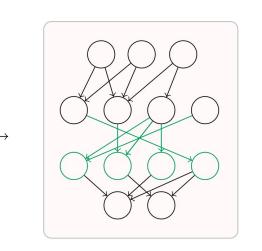
Red edges are invalid = cleaning required

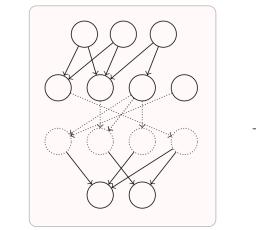
Several kinds of mutation:

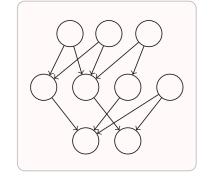
- Adding a new rule to randomly chosen SN P gates
- Removing a rule to randomly chosen SN P gates
- Adding a new input line to randomly chosen SN P gates
- Removing an input line to randomly chosen SN P gates (requires cleaning)
- Adding a new gate in a randomly chosen layer (plus random edges)
- Removing a gate in a randomly chosen layer (requires cleaning)

More drastic mutations:









Adding a new layer to the circuit

(plus random edges)

Removing a layer from the circuit

(requires cleaning)

	Algo	orithm 3 Genetic Algorithm for finding a SN P	circuit that computes a				
	given	Boolean function f					
	1: p	rocedure $EVOLVE(f)$					
	2:	2: $\triangleright f$ is (possibly partially) defined by a list of pairs $(\mathbf{x}, \mathbf{y}) \in \{0, 1\}^n \times \{0, 1\}^m$					
	3:	3: $P \leftarrow \text{initial population of randomly generated SN P circuits}$					
	4:	4: FIT \leftarrow fitness values of each circuit in P					
	5:	5: save the maximum and average fitness values in a list					
• Describes a des	6:	while stopping criterion is not verified do					
 Pseudocode: 	7:	$\triangleright P'$ and FIT' constitute the new generation					
	8:	$P' \leftarrow \text{best } p \text{ percent circuits from } P$	$\triangleright p$ typically is in $[0, 10]$				
	9:	$FIT' \leftarrow \text{fitness values of circuits in } P'$					
	10:	for $i \leftarrow 1$ to $(1 - p/100) \cdot P $ do					
	11:	parent1, parent2 \leftarrow FITNESSPROPORTIONATESELECTION(P)					
	12:	child $\leftarrow CROSSOVER(parent1, parent2)$	▷ only the fittest among the two children is kept				
	13:	add MUTATION(child) to P'	-				
	14:	add the fitness of child to FIT'					
	15:	end for					
	16:	save the maximum and average fitness values					
	17:	$P \leftarrow P'$	\triangleright substitute P with P'				
	18:	end while					
	19: e	nd procedure					

19

The following mutation probabilities have been experimentally found, and have been used in all experiments:

		Remove layer					Random input lines
Probability	0.008	0.080	0.030	0.200	0.005	0.080	0.010

For every simulation, the **best** and the **average** fitness of individuals were recorded

First experiment: PARITY (XOR) function

- 5 inputs, 1 output
- Function entirely specified (all input/output pairs provided)
- Population size $|P| \in \{20, 30, 40\}$
- Minimum number of intermediate layers in randomly generated circuits: $l_{min} \in \{1,2\}$
- Maximum number of intermediate layers in randomly generated circuits: $l_{max} \in \{l_{min}, l_{min} + 1\}$
- Stopping criterion: 200 generations
 - 15 simulations Computed the average between the best fitness in each simulation

First experiment: PARITY (XOR) function

Population	Min layers	Max layer	Mean Fitness	Successful simulations
40	3	4	0.93125	2/15
40	1	2	0.9125	1/15
30	3	3	0.9125	2/15
30	3	4	0.9125	2/15
40	2	3	0.910417	1/15
20	3	4	0.908333	5/15
30	2	3	0.908333	4/15
		:		
20	1	1	0.879167	1/15

- 8 inputs, 1 output
- Function entirely specified (all input/output pairs provided)
- Population size $|P| \in \{60, 80, 100\}$
- Minimum number of intermediate layers in randomly generated circuits: $l_{min} \in \{1,2,3\}$
- Maximum number of intermediate layers in randomly generated circuits: $l_{max} \in \{l_{min}, l_{min} + 1\}$
- Stopping criterion: 500 generations
 - 15 simulations for each set of parameters

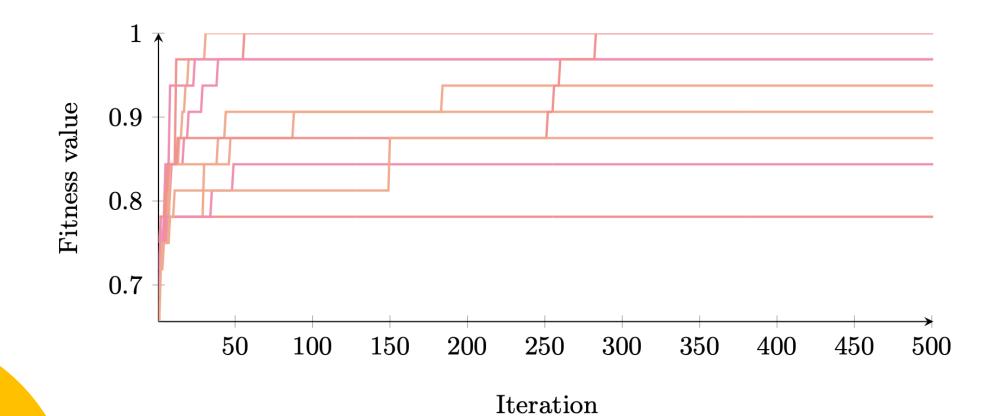
Population	Min layers	Max layer	Mean Fitness	Successful simulations
100	2	2	0.889844	0/15
100	3	3	0.835417	0/15
60	3	4	0.835156	1/15
80	3	3	0.827604	1/15
60	3	3	0.819792	0/15
60	1	2	0.811979	0/15
100	1	1	0.810156	0/15
		÷		
60	1	1	0.765104	0/15

Grid search over the following mutation probability values:

- Probability of adding a new layer at each iteration $\in \{0.005, 0.01, 0.02\}$
- Probability of adding a new neuron in a random layer $\in \{0.03, 0.05\}$
- Probability of removing a neuron from a random layer $\in \{0.05, 0.15, 0.25\}$
- 15 simulations for each set of parameters

Add layer probability	Add neuron probability	Remove neuron probability	Average Fitness	Successful simulations
0.01	0.05	0.05	0.9125	2/15
0.01	0.05	0.25	0.8930	0/15
0.01	0.03	0.15	0.8883	0/15
0.01	0.03	0.25	0.8628	0/15
0.01	0.05	0.15	0.8529	1/15
0.02	0.05	0.05	0.8487	0/15
0.005	0.03	0.05	0.8482	0/15
		÷		
0.02	0.03	0.05	0.8016	0/15

Growth of fitness value for the best 15 circuits, using the best set of parameters:



We considered two Boolean functions expressed in the Algebraic Normal Form (ANF):

$$egin{aligned} f_1(x_1,\ldots,x_5) &= 1 \oplus x_2 \oplus (x_1 \wedge x_2) \oplus (x_1 \wedge x_4) \oplus (x_1 \wedge x_5) \oplus (x_2 \wedge x_3) \oplus \ & (x_3 \wedge x_5) \oplus (x_1 \wedge x_2 \wedge x_3) \oplus (x_1 \wedge x_2 \wedge x_5) \oplus (x_1 \wedge x_3 \wedge x_4) \oplus \ & (x_1 \wedge x_3 \wedge x_5) \oplus (x_1 \wedge x_4 \wedge x_5) \oplus (x_3 \wedge x_4 \wedge x_5) \oplus \ & (x_1 \wedge x_3 \wedge x_4 \wedge x_5) \oplus (x_2 \wedge x_3 \wedge x_4 \wedge x_5) \oplus \ & (x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5) \oplus \ & (x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5) \end{pmatrix} \end{aligned}$$

$$egin{aligned} f_2(x_1,\ldots,x_5) &= x_1 \oplus (x_1 \wedge x_4) \oplus (x_1 \wedge x_5) \oplus (x_2 \wedge x_4) \oplus (x_3 \wedge x_5) \oplus \ & (x_4 \wedge x_5) \oplus (x_1 \wedge x_2 \wedge x_3) \oplus (x_1 \wedge x_2 \wedge x_4) \oplus (x_1 \wedge x_2 \wedge x_5) \oplus \ & (x_2 \wedge x_3 \wedge x_4) \oplus (x_2 \wedge x_3 \wedge x_5) \oplus (x_1 \wedge x_2 \wedge x_3 \wedge x_4) \oplus \ & (x_1 \wedge x_3 \wedge x_4 \wedge x_5) \oplus (x_2 \wedge x_3 \wedge x_4 \wedge x_5) \oplus \ & (x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5) \end{aligned}$$

- 5 inputs, 1 output
- Function partially specified (80% input/output pairs provided)
- Population size $|P| \in \{75, 100, 125\}$
- Minimum number of intermediate layers in randomly generated circuits: $l_{min} \in \{1,2,3\}$
- Maximum number of intermediate layers in randomly generated circuits: $l_{max} \in \{l_{min}, l_{min} + 1\}$
- Stopping criterion: 500 generations
 - 20 simulations for each set of parameters

	Input set size	Population	Min layers	Max layer	Mean Fitness	Successful simulations
	Partial $(22/32)$	100	2	2	0.91818	3/20
		125	2	2	0.91591	1/20
f.		100	2	3	0.91136	1/20
f_1	$\begin{array}{c} \text{Complete} \\ (32/32) \end{array}$	125	1	1	0.89531	1/20
		125	3	3	0.89375	0/20
		100	1	1	0.88906	0/20
f_2	Partial $(22/32)$	100	3	4	0.92500	1/20
		100	2	3	0.925	1/20
		125	1	1	0.92273	1/20
	$\begin{array}{c} \text{Complete} \\ (32/32) \end{array}$	125	2	3	0.86406	0/20
		125	3	3	0.86406	0/20
		125	1	1	0.86094	0/20

Grid search over the following mutation probability values:

	Add layer probability	Add neuron probability	Remove neuron probability	Average Fitness	Successful simulations
	0.001	0.01	0.25	0.90469	0/30
f_1	0.003	0.01	0.25	0.90156	0/30
JI	0.003	0.03	0.15	0.89687	1/30
	0.003	0.03	0.05	0.87187	0/20
f_2	0.005	0.01	0.05	0.86875	0/20
	0.003	0.03	0.25	0.8625	0/20

Future work

- Perform further experiments, on more complicated Boolean functions
- Implementing different crossover operations, and stopping criteria
- Implementing other evolutionary algorithms
 - Grammatical Evolution, Evolution Strategies, Memetic Algorithms
 - Augmenting structures?
- Perform an ablation study
- Explore the fitness landscape

- Apply evolutionary techniques to standard SN P systems (and their extensions)
- Compare SN P circuits with other kinds of Boolean circuits

Thank you for your attention !

Alberto Leporati and Lorenzo Rovida

alberto.leporati@unimib.it, lorenzo.rovida@unimib.it